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THE C W U S T I O N  OF ~ C O W O N E N T  CONDENSED l4IxTITILEs 

N. N. Ba- and Yu. A. Kondrashkov 

Suppose we take a mixture of two gasifying components* (e.g., /216 
KClO 

vo la t i l e  par t ic les  (e.g., tungsten). 
the basic  m i x t u r e  be uo cm/sec, and the r a t e  of combustion of the 

mixture with the added pa r t i c l e s  u Bn/sec. 

f bitumen) and introduce i n t o  it a certain amount of non- r, 
L e t  the rate of combustion of 

The r a t i o  u/uo shows the 

var ia t ion in the rate of combustion on introducing a given impurity. 

a t ion  in the dimension d of the non-volatile particles.  
L e t  us now consider how the quantity z w i l l  vary with vari- 

1. For suf f ic ien t ly  large d we should get z --* 1, Le., 
the addition of suf f ic ien t ly  large par t ic les  should not a f f ec t  the 
l i nea r  r a t e  of combustion of the basic system. 
l y  large pa r t i c l e s  can ign i te  andburn only a t  points remote from 
the combustion f ron t  of the gasification products of  KClO 

In fac t ,  sufficient-  

and 4 
bitumen** and therefore cannot transfer t o  f resh  material  any sub- 

* Components (or iginal ly  sol id)  which first gasify and only then mix 
and burn. 
assumed that the gasification of oxidizers and, l e s s  probably, of 
organic fuels is  a c c q a n i e d  by the i r  p a r t i a l  dispersion in the  form 
of very fine particles.  T h i s  extends the zone of gasification and 
complicates the whole process. 

On the basis of the  work of P. F. Polrhil [l], it may be 

**We shall consider the case where the s i z e  of the KC1O4 pa r t i c l e s  
(dox) i s  suf f ic ien t ly  small, so that the combustion f ron t  of the 
gasif icat ion products of KC104 and bitumen i s  plane and combustion 
proceeds under kinet ic  conditions [2, 3). 
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stantial part of their heat of combustion. 
heat losses due to preheating and phase transformations of the large 
particles in the zone between the fresh material and the combustion 
front m e  a l s o  muill. In this case the rate of combustion is de- 
termined by the rate of volume heat release due only  to combustion 

of the gasification products of KC104 and bitumen (g1 , cal/cm’- secj 

at a temperature somewhat less than the temperature at the combustion 
front of the basic mixture (without added particles), the composition 
of the gas being the same. 

On the other hand, the 

1 

2. Let us now turn to the case of sufficiently small 
added particles. There is a certain particle size d* such that when 
d I d* the particles will ignite and burn completely in the zone be- 
tween the fresh material and the combustion front of the gasification 
products. The order of d* can be estimated from the condition 

t s t  c d  

where tc = combustion time of particle, and td = dwell the of par- 

ticle in zone with temperature lying between Ti (ignition point) 

and Tf ( temperature at front). 

We shall take 

3 



3 

vhere p , p 

D 

further take 

= density of particles and gas (gasification products), 
P g  

= diffusion coefficient, B = transport parameter [&I, We shall g 

where (see [5]) 

where a 

of particles, 

(k-phase), Ts = temperature at surface of k-phase, qo = heat of 

gasification of the binary mixture KClO + bitumen, In practice, 

when d S d* we can take w a v. 

v = thermal diffusivity and velocity of gas, w = velocity 
g' 

= mean heat capacity of the condensed phase 

4 
Then from (1 ) we get: 
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D T, - T* 

i.e., d* i s  proportional t o  the width of the zone between the front  
and the  surface of the k-phase (- a /v>, but less than the l a t t e r  

g 

(since p,/pp Q 1 ). 

d* is at ta ined when Ti = Ts. 

When T.  = Tf, d* vanishes; the maximum value of 1 

Equation (2), however, does not permit 

a numerical evaluation owing t o  the indeterminacy of the method of 
computing the parameter B and t h e  absence of r e l i ab le  data on the 
igni t ion point. It i s  clear only t ha t  d* i s  very s m a l l  and, for 
example, a t  1 abs. ah.  scarcely exceeds a matter of tenths of a 
micron f o r  the system i n  question. 

&7 

3. When d < d*, the interaction of the components falls 
in to  two spa t i a l ly  separate stages: 
the gasification products of K C l O  4' 

first the par t ic les  react  with 
then there follows a reaction 

between the gasif icat ion products of bitumen and the remaining pa r t  
of  the gasification products o f  K C l O  

there  i s  ordinarily a s ingle  leading stage, which is responsible f o r  
the experimentally observed r a t e  o f  combustion, the other subordinate 
stages being obliged t o  adjust  themselves t o  this r a t e  as a result 
of heat t ransfer  from the leading stage. 
themselves (without heat t ransfer  from the leading stage) would 
e i the r  be quite incapable of sustaining the propagation of the flame 
or  give a lower rate of combustion. Naturally, the subordinate 
stages can themselves influence the r a t e  of combustion, but t h e i r  
influence is  only indirect:  i f  the velocity of a subordinate stage 
of the reaction is  varied, the rate  of combustion will vary only t o  
the extent t ha t  the velocity of the leading stage is affected. If 
(for  example, by adding a very small amount of par t ic les  acting 
only on a subordinate stage) we vary the velocity of a subordinate 
stage of the reaction, without affecting e i ther  the temperature or 

In multi-stage combustion 4' 

The subordinate stages 
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the  composition of the reagents i n  t he  leading zone, there w i l l  be 
absolutely no change in the r a t e  of combustion. 

Fine Medium Large 
par t ic les  par t ic les  par t ic les  

From the above it follows that on adding a given, not too 
great percentage of non-volatile par t ic les ,  such that the combustion 
of  the par t ic les  is not the leading stage, the r a t e  of combustion 
should remain quite unaffected by a fur ther  (below d*> reduction in 
the s i ze  of the particles* or by a reduction in Ti (so long as  Ti > 

Ts) .  For example, following a sudden reduction in Ti the par t ic les  

begin t o  ign i te  and burn closer t o  the  surface of the k-phase, the 
flow of heat t o  the f resh  material i s  intensified,  and there is  a 
corresponding increase in the rate of gasification. The combustion 
front ,  however, cannot deal  with the increased flow of gasif icat ion 

*S t r i c t ly  speaking, this will occur f o r  a pa r t i c l e  s ize  l e s s  than 
the d* from (2), since it i s  necessary t o  take into account not 
only the combustion time of the par t ic le  but a l so  the time f o r  the 
temperature t o  equalize over the flow cross section. 

6 



products (since neither the temperature a t  the f ron t  nor the  cmpo- 
s i t i o n  of the  gas is  affected) and begins t o  move away from the 
surface of the k-phase u n t i l  the rate  of gasification returns t o  
its or ig ina l  value*. O f  course, the temperature prof i le  w i l l  then 
be d i f fe ren t  from the or iginal  one. 
a hcrea_se i n  the heat f ract ion reaching the surface of the k-phase 
from the burning par t ic les ,  and a decrease in the  heat f ract ion from 
the combustion f ront  of the gasification products. 

When d < d* (and the percentage of par t ic les  added is  not too 
great) ,  the  r a t e  of combustion w i l l  depend on the r a t e  of volume 
heat release due only t o  the  combustion of the gasification products, 
but now a t  a higher temperature** than f o r  the s ta r t ing  (particle- 
l e s s )  mixture and with a gas composition poorer in oxidizer. 

In part icular ,  there will be 

4.. Finally, given a “medium” pa r t i c l e  size,  when the 
combustion zone of the gasification products and the combustion 
zone of the par t ic les  a re  not spa t ia l ly  separated, the r a t e  of com- 
bustion w i l l  depend both on Q, and on I where Q2 ( c a l / d * s e c )  is 

the r a t e  of volume heat release due t o  combustion of the particles.  
Thus, we can expect the curve z(d) t o  have the form shown in  

the figure: a plateau when d < d*, an asymptote z - 1 f o r  large d, 
and a minimum close t o  the boundary between medium and large particles**. 

2’ 

* 
is  exerted on a subordinate stage it may become the leading stage, 
and vice versa. 

** On condition that the  heat of combustion of the par t ic les  i s  
suf f ic ien t ly  large. 

***Note that the position and value of  this minimum a lso  depends on 
whether the heat conductivity of the par t ic les  is suf f ic ien t ly  large 
or suf f ic ien t ly  small. In the case of m e t a l  par t ic les ,  i. e. , par- 
t i c l e s  with high thermal conductivity, the temperature a t  the  surface 
and a t  the center of the par t ic le  i s  prac t ica l ly  the same ( i n  the 
range of par t ic le  s izes  with which we are  concerned). The ini t ia l  
heating of a par t ic le  is l imited by the rate of heat transfer from 
the gas t o  the particle.  Conversely, in the case of par t ic les  with 
very low thermal conductivities (e.g. pa r t i c l e s  of charcoal) the tem-  
perature a t  the surface of  the p a r t i c l e s  may be considerably higher 
than a t  t h e i r  center (if the par t ic le  i s  not too small). The ini t ia l  
heating of a par t ic le  i s  limited by i t s  thermal conductivity. In 
these circumstances, of course, the cooling of the gas by the par- 
t i c l e s  i s  slower than i n  the f i r s t  case. 

It should be borne in mind that if a suf f ic ien t ly  strong influence 
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5. So far the above reasoning has been experimentally 

In accordance with the theory, 

For example, 

ver i f ied f o r  the case of large particles. 
s imilar  t o  that described in [SI. 
adding large par t ic les  of W or  Alreduced the r a t e  of ccnabustion of 
mixtures of Kclo,+ + bitumen by not more than 5-1 5%. 

f o r  a m i x t u r e  of KC104 (do= 

A1 (d = 190 r ~ 1 )  the following results w e r e  obtained: 

The method employed was 

10 1) + bitumen (ao = 0.75)* + 13.1% 

The experimental verification of the  presence of a plateau 
corresponding t o  d < d* i s  very d i f f icu l t ,  since it i s  necessary 
t o  have several very f i n e  (for orientational purposes -- of the 
order of 0.1-0.01 1) f ract ions of the given par t ic les .  

6. Apart from the  effect  of the addition of large par- 
t i c l e s  on z, we were a l so  able t o  t e s t  by experiment another pro- 
posit ion following from our theory, namely that f o r  "mediumf1 
pa r t i c l e s  the value of z ( for  d = const) should f a l l  with increase 
in p. 
mately diffusion conditions [7 ] .  
volume due t o  pa r t i c l e  combustion i s  then: 

In fac t ,  after igni t ion the par t ic les  burn under approxi- 
The r a t e  of heat release per un i t  

- m K C I O q / m b i t  

*" - (mKC1O,/mbit)stoich 
, where mKC1O,mbit a r e  the weight frat- 

4 
t ions  of K C l O  and bitumen i n  the mixture. 4 

8 
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where up = linear rate of combustion of par t ic le ,  N1 = number of 

pa r t i c l e s  per un i t  volume, Q = heat of reaction of par t ic le  with 
oxidizer. Using expression (3.44) in [L]  f o r  pp up and substi- 
tu t ing  

where N = number of par t ic les  per un i t  volume of k-phase, m 

f rac t ion  of par t ic les  i n  k-phase, pm = density of k-phase, we get: 

= weight 
P 

In ( 4 )  the only fac tor  dependent on the pressure is u/w - 
, where 0 < n2 < 1 (n2 = 0 corresponds t o  the case of large 

n2 - P 

9 
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TABLE 1 

Variation i n  the Rate of Combustion on Adding 
Par t ic les  t o  a Stoichiometric Mixture of 

K r . 1 0  ( A  a 10 f Bitumen. -----4 -ox 

I I Z 

par t ic les ,  and n2 = 1 t o  the  case of suff ic ient ly  fine par t ic les) .  

M e a n w h i l e ,  the r a t e  of heat release due t o  the reaction of the 

gasif icat ion products CP is proportional t o  pl, where nl = 1 f o r  

a monomolecular reaction, n, = 2 f o r  a bimolecular reaction, and so 

on. Thus, as  a rule, (P1 increases with increase i n  p more rapidly 

than CP2, so that the par t  played by CP2 diminishes with increase i n  

p, which leads t o  a reduction in z. It should also be borne in mind 

1 
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1.38 
1.0 
- 

1.44. 
1.0 

Rate of Combustion of Three-Component Mixtures 
i(100 - a)% [KC104 + Bitumen (ao = 1 >] + a$ 

Par t ic les  j and the Corresponding 
Binary Mixtures. 

5.37 7.5 20.2 31.1 
4.3 6.7 19.4 33.0 
3.5* 5.4* 9.2* 12.5" 

5.6 8.0 23.1 38 
4.3 6.7 21.7 36.4 

Part ic les ,  % 

I 
hen p 2 50 gauge atm. wi l l  

not burn 
1.88 6.9 9.6 22 
1.0 4.3 6.7 19.4 

W, 13.1 

3.5 

33.6 
33 

W, 31.1 

Al, 13.1 

1.14 
1.0 

Z r ,  13.1 

T i ,  13.1 4.8 7.2 18.4 29.3 
4.3 6.7 19.4 33 

Rate of Cam- 
bust ion, 
mm/sec 

U 
U 
0 

U' 

U 

uO 
U' 

U 
U 

0 

U' 

U 

uO 

U' 

U 
U 
0 

U' 

Pressure (gauge atm. ) 

hen p S 50 gauge ab .  will I 3.8 not burn 
* S .  A. Tsyganovls data f o r  40% W + 60% KCTO,. 

of 34.2% W + 65.8% KCIOA (corresponding t o  the  ternary m i x t u r e  i n  
question) is even lower. 

The rate of combustion 
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tht ss p increases a pa r t i c l e  of a given s i ze  becomes larger  and 
l a rge r  in relat ion t o  the  combustion zone of the gasification prod- 
ucts. 

periment actual ly  does give a monotonic decrease in z with increase 
The figures in Table 1 show that f o r  "medium" par t ic les  ex- 

in p. 

7. When a not too great percentage of "medium" par- 
t i c l e s  i s  added, Q2 should be small compared with !+ (taking in to  

account the change i n  the temperature and gas composition due t o  
pa r t i c l e  combustion). It may be assumed that f o r  the mixtures i n  
Table 1 t h i s  condition i s  fu l f i l l ed .  In fac t ,  it proved that the 
binary metal-oxidizer mixtures obtained if bitumen i s  removed (or  
more accurately not introduced) from the ternary m i x t u r e  ei ther,  a s  
i s  generally the case, do not burn or  have a r a t e  of combustion u1 
substant ia l ly  lower than u and uo (Table 2). In other words, the 
rate of combustion u of the mixtures in Tables 1 and 2 is determined 
by the r a t e  of reaction of the gasification products of K C l O  and 
bitumen, 4 

CONCLUSIONS A 
/ 3 7  3 4  

1. For systems burning in the gas phase, adding large metal /219 
par t i c l e s  has no marked effect  on the r a t e  of combustion (reduces 
it sl ight ly) .  This is because the par t ic les  burn too far from the 
m a i n  zone of combustion, w h i l e  there is  only a s l igh t  reduction in 
the temperature of the combustion zone due t o  preheating and phase 
transformations of the par t ic les ,  provided the latter a re  suffi- 
c ien t ly  large. 

2. As the s i z e  of the metal par t ic les  decreases, the heat 
A t  

Accord- 

losses due t o  the i n i t i a l  heating of the par t ic les  increases. 
the  same time there is an increase in the flow of heat from the 
zone of par t ic le  combustion t o  the m a i n  combustion zone. 
ingly, as the par t ic les  a re  reduced in size,  the r a t e  of combustion 
w i l l  pass through a minimum and then increase (if the heat of com- 
bustion of the metal is suff ic ient ly  large). 
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3. If the percentage of metal added is  not too large, so 
t h a t  the stage of par t ic le  combustion i s  not the  leading stage, there 
exists a m i n i m u m  s ize  of the metal par t ic les ,  below which the rate 
of combustion will stop increasing with fur ther  pulverizing of the  
m e t a l .  
metal par t ic les  a re  able t o  burn up completely before reaching the 
mb CGEbl lS t , iOrz  zone, 

T h i s  m i n h u m  s i ze  is determined by the condition that the 

4. For par t ic les  of  "medium" s i ze  the e f fec t  diminishes as 
t he  pressure increases, since the rate of the gaseous reactions 
generally increases with increase in pressure more rapidly than the 
r a t e  of combustion of the  metal particles. 

5. This theory has been par t ia l ly  tes ted by means of ex- 
periments with a mixture of KC104, bitumen, and par t ic les  of W, Al, 
T i ,  and Zr .  

Academy of Sciences USSR Rec'd: 2 June 1962 

I n s t i t u t e  of Chemical Physics 
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